Abstract

In this work, we investigate the impact of natural organic matter (NOM) and light on silver nanoparticle (AgNP) dissolution kinetics with particular emphasis on determining the (i) mechanism via which NOM affects the oxidative dissolution of AgNPs, (ii) the role of photogenerated organic radicals and reactive oxygen species (ROS) in oxidative dissolution of AgNPs, and (iii) the mechanism of formation of AgNPs in NOM solution under dark and irradiated conditions. We measured the oxidation of citrate stabilized AgNPs by O2 and hydrogen peroxide (H2O2) in the dark and in irradiated Suwannee River fulvic acid (SRFA) solutions at pH 8.0. Results show that the reactivity of AgNPs toward O2 and H2O2 in the dark decreased in the presence of SRFA as a result of blocking of AgNP surface sites through either steric or electrostatic effects. Irradiation promoted dissolution of AgNPs by O2 and H2O2 in the presence of low concentrations (≤20 mg·L-1) of SRFA as a result of contribution from photogenerated H2O2 formed on irradiation of SRFA as well as photofragmentation of AgNPs. Furthermore, our results show that photogenerated superoxide can induce formation of AgNPs by reducing Ag(I) ions. Based on our experimental results, we have developed a kinetic model to explain AgNP transformation by O2 and H2O2 in the dark and in irradiated SRFA solutions with this model of use in predicting the transformation and fate of AgNPs in natural waters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.