Abstract

Ocean pollution by microplastics, i.e. small pieces of plastic of less than 5 mm, is one of the major concerns for the future of our planet. Secondary microplastics formation is due to fragmentation of macroplastic waste. This fragmentation can be attributed to environmental loadings such as waves, winds and tides, coupled with a change in mechanical properties of polymers induced by UV and seawater ageing. This study aims to characterize and understand changes in the mechanical behaviour of Polyethylene Terephthalate (PET) induced by hydrolysis, especially for high degradation levels. Thin films (200 μm) of PET were aged in water at temperatures from 110 °C to 80 °C for up to 150 days. Embrittlement occurs with chain scission during hydrolysis when molar mass of the polymer falls below 17 kg/mol. When the polymer is brittle, i.e. for high levels of degradation, the stress at break decreases linearly with the molar mass, and can be described by a simple mathematical expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.