Abstract

A combined high-pressure carbon dioxide (HP-CO 2) and thermal degradation reaction of betanin and isobetanin in aqueous solution was investigated and can be described by a first-order decay. At 45 degrees C, the degradation rate constant ( k) for each pigment component significantly increased (the half-life ( t 1/2) decreased, p < 0.05) with elevated pressure. Furthermore, HP-CO 2 treatment led to lower k values (higher t 1/2 values) than thermal treatment. However, k and t 1/2 values approached those of thermal treatment when the pressure was >30 MPa combined with temperatures exceeding 55 degrees C. Moreover, betanin was more stable than isobetanin under HP-CO 2. E a values ranged from 94.01 kJ/mol for betanin and 97.16 kJ/mol for isobetanin at atmospheric pressure to 170.83 and 142.69 kJ/mol at 50 MPa, respectively. A higher pressure and temperature as well as longer exposure time resulted in higher values of L*, b*, C*, and h degrees . HP-CO 2 induced more degradation products from betanin and isobetanin than thermal treatment with an identical temperature and exposure time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.