Abstract
We report on the optimization of interface structure in ZnSnP2 solar cells. The effects of back electrode materials and related interface on photovoltaic performance were investigated. It was clarified that a conventional structure Mo/ZnSnP2 showed a Schottky-behavior, while an ohmic-behavior was observed in the Cu/ZnSnP2 structure annealed at 300 °C. STEM-EDX analysis suggested that Cu-Sn-P ternary compound was formed at the interface. This compound is considered to play an important role to obtain the ohmic contact between ZnSnP2 and Cu. In addition, it was clarified that the aqua regia etching of ZnSnP2 bulk crystals before chemical bath deposition process for the preparation of buffer layer was effective to remove the layer including lattice defects introduced by mechanical-polishing, which was supported by TEM observations and photoluminescence measurements. This means that the carrier transport across the interface was improved because of the reduced defect at the interface. Consequently, the conversion efficiency of approximately 2% was achieved with the structure of Al/ZnO;Al/ZnO/CdS/ZnSnP2/Cu, where the values of short circuit current density, JSC, open circuit voltage, VOC, and fill factor, FF, were 8.2 mA cm-2, 0.452 V, and 0.533, respectively. However, the value of VOC was largely low considering the bandgap value of ZnSnP2. To improve the conversion efficiency, the optimization of buffer layer material is considered to be essential in the viewpoint of band alignment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.