Abstract

PurposeThe purpose of this paper is to know the influence of heat generation/absorption and slip effects on heat and mass transfer flow of carbon nanotubes – water-based nanofluid over a rotating disk. Two types of carbon nanotubes, single and multi-walled, are considered in this analysis.Design/methodology/approachThe non-dimensional system of governing equations is constructed using compatible transformations. These equations together with boundary conditions are solved numerically by using the most prominent Finite element method. The influence of various pertinent parameters such as magnetic parameter (0.4 – 1.0), nanoparticle volume fraction parameter (0.1 – 0.6), porosity parameter (0.3 – 0.6), radiation parameter (0.1 – 0.4), Prandtl number (2.2 – 11.2), space-dependent (−3.0 – 3.0), temperature-dependent (−3.0 – 1.5), velocity slip parameter (0.1 – 1.0), thermal slip parameter (0.1 – 0.4) and chemical reaction parameter (0.3 – 0.6) on nanofluids velocity, temperature and concentration distributions, as well as rates of velocity, temperature and concentration is calculated and the results are plotted through graphs and tables. Also, a comparative analysis is carried out to verify the validation of the present numerical code and found good agreement.FindingsThe results indicate that the temperature of the fluid elevates with rising values of nanoparticle volume fraction parameter. Furthermore, the rates of heat transfer rise from 4.8% to 14.6% when carbon nanotubes of 0.05 volume fraction are suspended into the base fluid.Originality/valueThe work carried out in this analysis is original and no part is copied from other sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.