Abstract

ABSTRACT The non-metallic catalyst graphitic carbon nitride (g-C3N4) has attracted a significant amount of attention due to its excellent photocatalytic performance. The photocatalytic performance of g-C3N4 has been further enhanced by the incorporation of graphene oxide (GO) as a composite catalyst. However, the enrichment and recovery of these two-dimensional composites after photocatalysis is still a difficult challenge. In this work, a visible light responsive graphene oxide/graphitic carbon nitride coated sponge three-dimensional composite (PU-GO/g-C3N4) was prepared by electrostatic self-assembly using polyurethane sponge (PU) as a skeleton and g-C3N4 as a photocatalyst. The degradation rate of rhodamine B (RhB) under visible light was used as an index to evaluate the photocatalytic performance of PU-GO/g-C3N4. The results demonstrate that during the photocatalytic degradation of RhB by PU-GO/g-C3N4, g-C3N4 is the main photocatalyst, while the holes and the superoxide radicals generated by electron excitation are the main agents. As a bridge connecting PU and g-C3N4, GO improves the agglomeration phenomenon of g-C3N4 on PU. Meanwhile, GO has excellent carrier mobility and inhibits the recombination of photogenerated electrons and holes. Moreover, the presence of GO enhances the absorption of light and dyes. Overall, the addition of GO effectively enhances the photocatalytic performance of PU-GO/g-C3N4 due to it enhances dye absorption, improves light energy utilization rate, and expedites transfer of photogenerated electrons. After 5 cycles, PU-GO/g-C3N4 still exhibits an RhB degradation rate of 92.06%, demonstrating good stability and recycling performance. This material shows great promise for practical environmental remediation applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.