Abstract

The impact of furfural on hydrogen production and microbial growth kinetics was assessed using mixed anaerobic cultures at mesophilic and thermophilic conditions. Mesophilic experiments showed a hydrogen yield of 1.6 mol H2/mol initial sugars at 1 g/L furfural which is a 45% enhancement from the control (0 g/L furfural) at a substrate-to-biomass ratio (S°/X°) of 4 gCOD/gVSS. On the other hand, thermophilic experiments showed no enhancement at 1 g/L furfural but rather a 53% decrease in hydrogen yield from its control. Furfural inhibition threshold limit was observed to be greater than 1 g/L for mesophilic experiments and less than 1 g/L for thermophilic experiments. In both cases, 4 g/L was the most recalcitrant furfural concentration, with propionate and lactate the most predominant soluble metabolites in the mesophilic and thermophilic experiments respectively. It was also noted that in the presence of furfural, hydrogen-producers in both mesophilic and thermophilic mixed cultures were inactivated as no hydrogen was produced until furfural was completely degraded irrespective of sugars degradation. This study also presents the kinetics of microbial growth and substrate degradation obtained using the Monod model on MATLAB®, ignoring an inhibition term. IC50 of the mesophilic and thermophilic experiments were 1.03 g/L and 0.5 g/L respectively indicating that the thermophilic hydrogen producers were more strongly affected by furfural than the mesophilic cultures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.