Abstract

Introduction. The goal is to perform a comparative analysis of energy consumption during the operation of a resonant two–mass mechanical system, depending on the point of application of the driving force to the first or second mass. The object of research is an oscillatory system of a vibrating machine consisting of two masses interconnected by elastic and dissipative elements. In addition, the first mass is connected to a fixed base through elastic and dissipative elements.Materials and methods. The research uses the main provisions of theoretical mechanics, mathematical modeling and simulation experiment in the Matlab-Simulink environment.Results. According to the results of research on a mathematical model of a two-mass oscillatory system with a point of application of the driving force to the first mass, it was found that with a driving force of 10 kN and a frequency of 80 rad/s, the amplitude of the oscillations of the first mass is 0,6 mm, and the second is 1,8 mm, while the amplitude gain is 3,94. To achieve the specified driving force, a directional debalance exciter with a mass of 10 kg of debalances must have an eccentricity of 0,16 m, and the power required to drive the oscillation exciter is 21,2 kW. In the case of applying a driving force to the second mass, it is possible to achieve the same amplitude of oscillations of the first mass (0,6 mm) with a driving force of 5 kN, an eccentricity of 0,078 m and a drive power of 4,9 kW, while the amplitude gain is 8,44.Originality. Thus, due to the dynamic properties of the two-mass system, the option with the point of application of the driving force to the second mass is 4,3 times more energy efficient than the option of applying the driving force to the first mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.