Abstract

Fluorinated LiCoMnO4–yFy (y = 0, 0.05, 0.1) spinel electrodes, electrochemically active at 5–5.3 V versus Li/Li+, show enhanced phase purity and enhanced capacity with increasing y. We disclose the impact of fluorination on the phase purity and reversible capacity of LiCoMnO4 via joint Rietveld refinement of neutron and synchrotron powder diffraction data, combined with micro-Raman spectroscopy. It is found that fluorination stabilizes the spinel phase and hinders precipitation of Li2MnO3 as a secondary phase, which controls the cation distribution on tetrahedral and octahedral sites in spinel. That is to say, for higher fluorine content the cobalt occupancy at the tetrahedral site in spinel decreases, and the lithium occupancy increases. Accordingly, the number of lithium sites that are available for electrochemical extraction and insertion of lithium ions is raised so that the capacity is increased. Further investigation of the lithium ion diffusion by means of cyclic voltammetry at different scan rates...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.