Abstract

There is increasing evidence suggesting that extremely low frequency electromagnetic fields (ELF-EMF) may influence several cell functions. Here the effects of ELF-EMF were studied on the expression of CD4+ cell surface receptors of human peripheral blood mononuclear cells (PBMC) using fluorescence-activated cell sorter (FACScan). The expression of CD4+ in ELF-EMF exposed (24, 48 and 72 h) and not exposed PBMC were not statistically significant. In addition, a flow cytometric analysis was determined by using a fluorescent labeled antibody, at 24 and 72 h incubations. The amount of bound antibody was distributed with a slight difference in the ELF-EMF-exposed PBMC compared to the not exposed cells. Moreover, DNA CD4+ expression in PBMC strongly increased in exposed cells, resting and activated with Phytohaemaglutinin (PHA). When polymerase chain reaction was performed on CD4+ mRNA of PBMC an increase of CD4+ mRNA expression was found after the resting cells were exposed to ELF-EMF at 24 h compared to not exposed cells, while at 48 and 72 h no difference was found. In the cell cycle progression analysis, the PBMC exposed to ELF-EMF presented a significant increase of percentage expression of cell cycle progression in the S phase compared to not exposed cells; while in G1 and G2 phases, there were no differences. Our results provide new evidence that ELF-EMF can affect CD4+ expression in PBMC and describe an additional biological activity for ELF-EMF affecting CD4+ transcription and translation protein and the increase of the percentage expression of the cell cycle progression of the S phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.