Abstract
Partially europium (Eu) substituted Ni0.4Cu0.2Zn0.4EuxFe2-xO4 (0.0 ≤ x ≤ 0.10) nanostructured spinel ferrites (NSFs) were produced by sol-gel auto-combustion strategy. The XRD analyses verified the existence of the single-phase composition in all the investigated samples. The Mössbauer spectra were used to estimate the values of the line-width disparity, isomeric shift (IS), quadrupole splitting, and hyperfine magnetic field (HMF). The values of HMF of the A and B sites decreased with the rise in Eu substitutions. The paramagnetic contribution of the NSFs increased with the rise in Eu3+ contents. The S-parameters of the proposed NSFs were measured using co-axial method. The frequency dispersions of the permittivity and permeability were utilized to determine the reflection losses in the 1–20 GHz frequency range. The occurrences of the natural ferromagnetic resonance (NFMR) enabled substantial absorption of the electromagnetic energy ranged from 2.5 to 9.5 GHz. There was established a strong correlation between the level of chemical substitution (x) and amplitude-frequency characteristics of the studied spinel ferrites was established. Furthermore, the increase of Eu substitution strongly influenced the frequency characteristics of the NSFs. Anomalous changing of the resonant amplitude (more than 4 times) was shown. This can be explained by the appearance of indirect exchange interactions between Fe3+ (3 d5) and Eu3+ (4f6) electronic shells. Results revealed a potential for practical applications of such kinds of materials in functional radio electronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.