Abstract

In this review we summarize current data on the mechanics of synthetic and naturally occurring biopolymers that are routinely employed in examination of contractility and cellular mechanosensation. We discuss the effect of physical boundaries on the mechanical behaviors of cell substrates and cellular mechanosensation. The application of contractile forces to underlying substrates enables anchorage-dependent cells to probe the physical properties of their microenvironment. Compliant substrates deform as a result of contractile forces generated by adherent cells and, in turn, the mechanical response of substrates influences numerous cellular processes. Unlike synthetic polymers that exhibit linear elastic responses to forces applied by adherent cells, naturally-occurring biopolymers exhibit non-linear, viscoelastic behavior. In turn, the viscoelastic behavior of fibrillar biopolymers may contribute to irreversible network compaction after application of cell-derived forces. Comprehensive characterization of the unusual mechanical properties of extracellular matrix proteins like collagen has provided novel insights into cell contractility and mechanosensation. We suggest that in the future, fabrication and application of novel substrates with fibrillar structures and non-linear viscoelastic behavior will be needed for a better understanding of the role of mechanosensation in many physiological and pathological processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.