Abstract
Many factors affect screw withdrawal resistance (SWR), including screw size, embedment depth, the pre-drilled hole’s diameter, dimensional accuracy, and the furniture pieces’ material properties being joined. While prior research has extensively examined the influence of these factors, this study aimed to explore a neglected factor: how drill bit wear impacts pilot hole quality and subsequent SWR. The experimental setup included pinewood samples with pre-drilled 5 mm diameter blind pilot holes with a depth of 45 mm. The holes were equally divided into two groups: one drilled with a sharp bit, the other with a blunt bit. Euro-type coarse furniture screws (7 mm major diameter, 4 mm minor diameter, 3 mm pitch) were screwed into all holes. Subsequently, SWR was measured using a universal testing machine. Results show a statistically significant decrease in SWR when using the blunt drill bit. This phenomenon can be explained by excessive local material degradation, increased surface roughness, and disrupted hole dimensional accuracy, collectively hindering SWR. The study’s findings offer insights into how excessive drill bit wear impacts the screw withdrawal capacity of pinewood, informing best practices in furniture and construction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.