Abstract

This paper presents the impact of current waveform and frequency on the formation of high-current anode phenomena in a vacuum interrupter experiment. Different waveforms including the alternative current pulses of 50, 180, and 260 Hz and direct current pulses of 5 and 10 ms are compared. The impact of different opening times and contact speeds on the high-current anode mode formation is investigated. The results show that both instantaneous current and total transferred charge are important in the formation of high-current anode modes. Therefore, the arcing time has a strong influence. Two types of anode spot modes with different electrical and optical characteristics are also observed. The transitions between different high-current modes are examined systematically, resulting in existence areas dependent on threshold current and gap length. The latter are determined for different contact materials including Cu, CuCr7525, and CuCr50 and different contact diameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.