Abstract

Appending conformationally restraining ring systems to the cyanine chromophore creates exceptionally bright fluorophores in the visible range. Here, we report the application of this strategy in the near-infrared range through the preparation of the first restrained heptamethine indocyanine. Time-resolved absorption spectroscopy and fluorescence correlation spectroscopy verify that, unlike the corresponding parent unrestrained variant, the restrained molecule is not subject to photoisomerization. Notably, however, the room-temperature emission efficiency and the fluorescence lifetime of the restrained cyanine are not extended relative to the parent cyanine, even in viscous solvents. Thus, in contrast to prior reports, the photoisomerization of heptamethine cyanines does not contribute significantly to the excited-state chemistry of these molecules. We also find that the fluorescence lifetime of the restrained heptamethine cyanine is temperature-insensitive and significantly extended at moderately elevated temperatures relative to the parent cyanine. Finally, computational studies have been used to evaluate the impact of the conformational restraint on atomic and orbital structure across the cyanine series. These studies clarify the role of photoisomerization in the heptamethine cyanine scaffold and demonstrate the dramatic effect of restraint on the temperature sensitivity of these dyes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.