Abstract

AbstractUnderstanding how climate change will affect oceanic fluid transport is crucial for environmental applications and human activities. However, a synoptic characterization of the influence of climate change on mesoscale stirring and transport in the surface ocean is missing. To bridge this gap, we exploit a high‐resolution, fully coupled climate model of the Mediterranean basin using a Network Theory approach. We project significant increases of horizontal stirring and kinetic energies in the next century, likely due to increments of available potential energy. The future evolution of basin‐scale transport patterns hints at a rearrangement of the main hydrodynamic provinces, defined as regions of the surface ocean that are well mixed internally but with minimal cross‐flow across their boundaries. This results in increased heterogeneity of province sizes and stronger mixing in their interiors. Our approach can be readily applied to other oceanic regions, providing information for the present and future marine spatial planning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.