Abstract

Electrofuels, including hydrogen, methane and ammonia, have been suggested as one pathway in achieving net-zero greenhouse gas energy systems. They can play a role in providing an energy storage and fuel or feedstock to hard-to-abate sectors. In future energy systems their role is often studied in case studies adhering to specific region. In this study we study their role by defining multiple archetypal energy systems, which represent approximations of real systems in different regions. Comparing the role of electrofuels across the cost-optimized systems relying only on renewable energy in power generation, we found that hydrogen was a significant energy vector in all systems, with its annual quantity approaching the classic electricity demand. The role of renewable methane was very limited. Electrofuel storages were needed in all systems and their capacity was the highest in the northern Hemiboreal system. Absence of cavern storage potential did not hamper the significance of electrofuels but increased the role of ammonia and led to average 5.5% systemic cost increase. Systems where reservoir hydropower was scarce or level of electricity consumption was high, needed more fuel storages. The findings of this study can help for better understanding of what kind of storage and generation technologies will be most useful in future carbon-neutral systems in different types of regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.