Abstract

As the development of kesterite solar cells accelerates, the bottlenecks in device performance need to be identified and ways for their circumvention defined and developed. In this work, we use 2-dimensional (2D) numerical simulations to explore possible reasons for low open-circuit voltage (Voc) in Cu2(Zn,Sn)Se4 (CZTSe) solar cells. High defect density in the CZTSe absorber and at the CZTSe/CdS interface can be significant reasons for Voc deficit, but they do not explain all of the losses observed experimentally. Local deviation from stoichiometry could create secondary phases with a lower band gap compared to the absorber. These secondary phases can be severely harmful to Voc if located in the vicinity of the heterointerface and along the grain boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.