Abstract

Estimation of stress distribution on the parts of a weapon is one of the most important stages of designing and optimization of firearms. The paper describes the finite element numerical model of the short recoil operated weapon and results of parametric analysis of the stress distribution on weapon parts. Considered changes in loading courses can be the result of differences in applied ammunition (produced in accordance with various standards or self-elaborated rounds). Conducted works allowed for estimation of approximate critical value of propellant gas pressure, which can be dangerous for pistol structure. Moreover, the paper presents the results of the kinematic characteristics investigation of the weapon using the finite element method and by way of the experimental tests, which proves the correctness of the assumptions made for the numerical model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.