Abstract

AbstractIntegration of a ferroelectric capacitor module in a standard CMOS process subjects the ferroelectric to various ambients during backend processing, some of which can render the ferroelectric essentially non-operational for NVRAM applications. Post-crystallization processing of sol-gel deposited integrated ferroelectric PZT capacitors in the presence of hydrogen-containing, reducing ambients is observed to degrade the nonvolatile polarization. Low-pressure hydrogen anneals at temperatures as low as 200°C substantially degrade the nonvolatile polarization while the DRAM polarization remains roughly constant. Leakage current drops by one order of magnitude and fatigue is accelerated. A ferroelectric capacitor module can be integrated with minimal degradation with careful modifications in the backend processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.