Abstract

Measurements of the branching ratios of $B \to D^{(*)}\tau\bar\nu/B \to D^{(*)}\ell\bar\nu$ and $B_c\to J/\psi\, \tau\bar\nu/B_c\to J/\psi\, \ell\bar\nu$ by the BaBar, Belle and LHCb collaborations consistently point towards an abundance of taus compared to channels with light leptons. However, the ratio $\Lambda_b \to\Lambda_c \tau\bar\nu/\Lambda_b \to\Lambda_c \ell\bar\nu$ shows a relative deficit in taus. In this paper, we critically address whether data still points towards a coherent pattern of deviations, in particular in light of the sum rule relating these decays in a model-independent way. We find that no common new physics explanation of all ratios is possible (within $2\sigma$ or $1.5\sigma$, depending on the ${\cal R}(\Lambda_c)$ normalization to light lepton channels). While this inconsistency could be a statistical fluctuation, further measurements are required in order to converge to a coherent pattern of experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.