Abstract

AbstractNitrogen transformations in epilithic biofilms of a large gravel bed river, the Garonne, France, has been studied upstream (one site) and downstream (four sites) of a large urban centre (Toulouse, 740 000 inhabitants).High biomass, up to 49 g AFDM m−2 (ashes free dry matter) and 300 mg chlorophyll a m−2 (Chl. a), were recorded at 6 and 12 km downstream from the main wastewater treatment plant outlet. The lowest records upstream and larger downstream (less than 16 g AFDM m−2 or 120 mg Chl. a m−2) could be explained by recent water fall (early summer low‐water period).Measurements of nitrogen exchange at the biofilm–overlying water interface were performed in incubation chambers under light and dark conditions. The addition of acetylene at the mid‐incubation time allowed evaluation of both nitrification (variation in NH4+ flux after the ammonium monooxygenase inhibition) and denitrification (N2O accumulation related to the inhibition of N2O reduction). Denitrification (Dw) and nitrification rates were maximum at sites close to the city discharges in dark conditions (up to 9.1 and 5.6 mg N m−2 h−1, respectively). Unexpected denitrification activities in light conditions (up to 1.4 mg N m−2 h−1) at these sites provided evidence for enhanced nitrogen self‐purification downstream.As confirmed by most probable number (MPN) counts, high nitrification rates in biofilm close downstream were related to enhanced (more than almost 3 log) nitrifying bacteria densities (up to 7.6×109 MPN m−2). Downstream of an urban centre, nitrogen transformations in the biofilm appeared to be influenced by the occurrence of an adapted microflora which is inoculated or stimulated by anthropic pollution. Copyright © 2002 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.