Abstract

BackgroundImpaired cerebrospinal fluid (CSF) dynamics may contribute to the pathophysiology of neurodegenerative diseases, and play a crucial role in brain health in older people; nonetheless, such age-related changes have not been well elucidated. Disproportionately enlarged subarachnoid-space hydrocephalus (DESH) is a neuroimaging phenotype of idiopathic normal-pressure hydrocephalus, originating from impaired CSF dynamics, and closely associated with aging. This study aimed to investigate the pathophysiology of DESH and determine age-related changes in CSF dynamics.MethodsUsing magnetic resonance imaging, we investigated the pathophysiology of DESH by quantitatively evaluating the volumes of DESH-related regions (ventricles [VS], Sylvian fissure [SF], and subarachnoid spaces at high convexity and midline [SHM]) and brain parenchyma in community-dwelling individuals aged ≥ 65 years. DESH-related regions were assessed using a visual rating scale, and volumes measured using voxel-based morphometry. Brain parenchyma volumes were measured using FreeSurfer software.ResultsData from 1,356 individuals were analyzed, and 25 (1.8%) individuals had DESH. Regarding the relationships between the volume of each CSF space and age, VS and SF volumes increased with age, whereas SHM volume did not increase. VS and SF volumes increased as the whole brain volume decreased, whereas SHM volume did not increase even if the whole brain volume decreased; that is, SHM did not expand even if brain atrophy progressed. Moreover, lower Mini-Mental State Examination scores were significantly associated with lower SHM volume and higher VS volume. These associations remained significant even when individuals with DESH were excluded.ConclusionsThis study showed that the volume of high-convexity and medial subarachnoid spaces did not expand and tended to decrease with age; the human brain continuously progresses toward a “DESH-like” morphology with aging in community-dwelling older persons (i.e., DESH might be an “accelerated aging stage” rather than an “age-related disorder”). Our results indicated that brain atrophy may be associated with the development of “DESH-like” morphology. In addition, this morphological change, as well as brain atrophy, is an important condition associated with cognitive decline in older adults. Our findings highlight the importance of investigating the aging process of CSF dynamics in the human brain to preserve brain health in older people.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.