Abstract

The influence of a soil-feeding termite nest (Cubitermes nikoloensis) on the development of a symbiotic microflora (rhizobia, arbuscular mycorrhizas) was tested in a pot experiment with a tropical legume (Crotalaria ochroleuca). Our results confirmed the role of soil-feeding termite nests as sites of high nutrient concentration, as a significantly higher content of available P and mineral-N was found in the mound wall. Arbuscular mycorrhizal spores increased in the soil near the termite mound. The mound soil itself almost totally depressed mycorrhizal establishment. The positive effect of the soils close to the mound was also evidenced by the number of nodules per root system as well as the nodule biomass per legume plant grown on this medium. Better growth of Crotalaria seedlings was observed in the soils from the mound wall; the shoot biomass increased by a factor of 9 and the root biomass by a factor of 6 as compared to the control soil (10 m away from the mound). Plant growth on soils from the immediate vicinity of the mound showed intermediate results but a higher N content per biomass unit. This probably reflected the association with arbuscular mycorrhiza and rhizobia. This work evidenced the linkage of plant nutrition to nutrient availability in mound material and the indirect mediating effect of the symbiotic microflora.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.