Abstract

It is well known that human hands or arthropod grippers (claws) have variable compliance or stiffness in their joints due to their muscle articulation. Like human hands, the adaptability and efficiency of robot control technology can be improved by utilizing the intrinsic dynamics of passive elements, leading to a well balanced coupling between control and mechanical design. In this research, we address shock and vibration isolation schemes of robotic system by embedding a variable stiffness elastomer component (B-MRE) in each articulated joint. In the future research, the B-MRE will be integrated with an actual robotic joint (revolute or prismatic) to demonstrate the effectiveness of the proposed shock and vibration isolation schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.