Abstract

Cyber-Physical Systems (CPS) are composed by multiple subsystems that encompass numerous interdependencies. Although indispensable and highly performant from a functional perspective, complex interconnectivity constitutes paradoxically a significant vulnerability when an anomaly occurs. Anomalies could propagate and impact the entire CPS with irreversible consequences. This paper presents an approach to assess the anomaly propagation impact risk on a three layers oriented graph which represents the physical, digital, and system variables of a CPS components and interdependencies. Anomalies are detected applying information quality measures, while potential propagation paths are assessed computing the cumulated risk represented by weights assigned to the graph edges. To verify the cascading impact of different anomalies four cyber-attacks - denial of service, sensor offset alteration, false data injection, and replay attack - were implemented on a simulated naval water distribution CPS. The propagation impact of three anomalies was successfully assessed and the corresponding estimated propagation path, if applicable, confirmed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.