Abstract

The coupled impact and rolling wear behavior of the medium-manganese austenitic steel (Mn8) were studied by comparison with the traditional Hadfield (Mn13) steel. Scanning electron microscopy (SEM), X-ray diffractometer (XRD), and transmission electron microscope (TEM) were used to analyze the wear and hardening mechanisms. The experimental results show that the impact and rolling wear resistance of hot-rolled medium-manganese steel (Mn8) is better than that of high-manganese steel (Mn13) under conditions of low-impact load. The better work hardening sensitivity effectively improves the wear resistance of medium-manganese steel. Not only the coefficient of friction is low, but the mass loss and wear rate of the wear are lower than that of high-manganese steel. After impact and rolling wear, a hardened layer with a thickness of about 600 μm is formed on the wear surface. The highest microhardness of the subsurface layer for Mn8 is about 594 HV and the corresponding Rockwell hardness is about 55 HRC, showing the remarkable work hardening effect. The wear-resistant strengthening mechanism of medium-manganese steel is compound strengthening, including the deformation-induced martensitic transformation, dislocation strengthening, and twin strengthening. In initial stages of impact and rolling abrasion, dislocation strengthening plays a major role. When the deformation reaches a certain extent, the deformation-induced martensitic transformation and twinning strengthening begin to play a leading role.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.