Abstract
Bispecific antibodies are promising agents for immunotherapy. Here, we describe a quadroma-based trifunctional bispecific antibody binding the chemokine receptor CXCR5 and the T-cell antigen CD3 that efficiently prevents tumor growth in a mouse B-cell lymphoma model. CXCR5 regulates the tissue homeostasis of mature B cells and is highly expressed on B-cell non-Hodgkin and lymphocyte-predominant Hodgkin lymphoma, as well as on a subset of CD4(+) T cells known as follicular T-helper cells. In vitro, the bispecific CXCR5::CD3 antibody efficiently recruited effector T cells to CXCR5 expressing B cells and induced a co-stimulation-independent activation of CD8(+) and CD4(+) T cells as demonstrated by the de novo expression of CD25 and CD69, and secretion of the cytokines IFN-γ, TNF-α, IL-6 and IL-10 by peripheral blood mononuclear cells. Notably, at low antibody concentrations, CXCR5::CD3 displayed a significantly higher cytotoxic activity against autologous B cells than its parental antibodies or rituximab. In vivo imaging revealed that CXCR5::CD3 and its parental CXCR5 antibody efficiently prevent tumor growth in a xenograft model of B-cell lymphoma in mice and prolong their survival. Taken together, our results identify CXCR5 as a promising target for antibody-based therapies in the treatment of B-cell malignancies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.