Abstract
Ethnopharmacological relevanceChinese Cordyceps (DongChong XiaCao), a parasitic complex of a fungus Ophiocordyceps sinensis and a caterpillar, is a traditional Chinese medicine. Polysaccharides extracted from O. sinensis have immunomodulatory effects on macrophages. However, the mechanism of polysaccharides on macrophage and the composition of polysaccharides are not known. Aim of studyWe aimed to investigate composition and structure of the intracellular polysaccharides from O. sinensis mycelia (designed as OSP), and evaluate its the immunomodulatory effect on macrophages and its underlying mechanism. Materials and methodsWe performed a liquid-state fermentation of O. sinensis to produce mycelia. The DEAE-Sephadex-A25 cellulose column and Sephadex-G100 gel column chromatography were employed to purify and character the intracellular OSP. Macrophages RAW264.7 cells were employed to evaluate OSP's immunomodulatory activity and the possible mechanism responsible for the activation of macrophages in vitro. ResultsThe average molecular weight of OSP was distributed at 27,972 Da, OSP was composed of xylose, mannose, glucose, and galactose with the ratio of 2.9 : 6.6 : 166 : 2.6, with a trace amount of fucose, arabinose and rhamnose. The phagocytosis of RAW264.7 cells was improved significantly and remarkable changes were observed in the morphology with OSP-treated cells. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis demonstrated that OSP had an ability to regulate the mRNA expression of pro-inflammatory and anti-inflammatory cytokines, and to induce the mRNA expression level of iNOS in a concentration dependent manner in RAW264.7 cells. Western blotting analysis showed that the regulation of NO and cytokines was mediated through mitogen-activated protein kinase (MAPK) and PI3K/Akt signaling pathways. ConclusionThis study demonstrated that OSP was with a capacity to activate macrophage cells RAW264.7 for an improvement of immunomodulation activities, which was through regulation of inflammatory mediators via MAPK and PI3K/Akt signaling pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.