Abstract

An immunosensor for the detection of Vibrio cholerae O1 was developed on the basis of surface plasmon resonance (SPR). A protein G layer was fabricated by means of the chemical coupling between the free amine (-NH2) groups of protein G and the activated carboxyl groups present on a self-assembled monolayer (SAM) consisting of a mixture of 11-mercaptoundecanoic acid (MUA) and hexanethiol (molar ratio of 1:2). A monoclonal antibody, which was confirmed to be specific to V. cholera O1 by the Western blotting technique, was immobilized on the protein G layer. The formation of the SAM, the protein G layer and the sequential binding of the antibody against V. cholera O1 were investigated with SPR spectroscopy. As the number of fabricated layers increased, the minimum angle of plasmon resonance was increased accordingly. The target bacteria, V. cholera O1, was measured with the fabricated immunosensor, whose detection range was between 10(5) and 10(9) cells/mL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.