Abstract

Immunomodulation in the local tissue microenvironment is pivotal for the determination of macrophage phenotypes and regulation of functions necessary for pro-healing effects. Herein, we demonstrate that a lymph node extracellular matrix (LNEM) prepared by the decellularization of lymph node tissues can mimic lymph node microenvironments for immunomodulation in two-dimensional (2D) and three-dimensional (3D) formats. The LNEM exhibits strengthened immunomodulatory effects in comparison to conventional collagen-based platforms. A 3D LNEM hydrogel is more effective than the 2D LNEM coating in inducing M2 macrophage polarization. The 3D LNEM induces macrophage elongation and enhances the M2-type marker expression and the secretion of anti-inflammatory cytokines. Additionally, the phagocytic function of macrophages is improved upon exposure to the intricate 3D LNEM environment. We demonstrate the reduced susceptibility of liver organoids to a hepatotoxic drug when co-cultured with macrophages in a 3D LNEM. This effect could be attributed to the enhanced anti-inflammatory functions and indicates its potential as a drug-testing platform that enables drug responses similar to those observed in vivo. Finally, the implantation of an LNEM hydrogel in a mouse volumetric muscle loss model facilitates the recruitment of host macrophages to the site of injury and enhances macrophage polarization toward the M2 phenotype for tissue healing in vivo. Therefore, 3D immune system-mimicking biomaterials could serve as useful platforms for tissue modeling and regenerative medicine development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.