Abstract

Entomopathogenic fungi can attack many insect hosts and have been applied as the eco-friendly alternatives to synthetic chemicals for the control of pests. Insects have developed different defense systems encountering entomopathogens including humoral and cellular immune responses. In the present study, injection of some native entomopathogenic fungi to the Chilo suppressalis Walker larvae resulted in an enhancement of the cellular and antimicrobial defenses. The numbers of total and differential hemocytes increased rapidly in the first 3 and 6 h but those gradually reduced 12 and 24 h post-injections. The nodule formation and phenoloxidase activity increased at the time intervals after fungal infection. A similar trend was found in the transcription of antimicrobial peptides including attacin1 and 2, cecropin1 and 2, gallerimycin, defensin, lysozyme, and prophenoloxidase-activating proteinase-3 during infection fungi. In all cases, the target gene transcription was upper in the larvae injected by the fungi than that of control larvae. These results may elucidate better knowledge on the interaction of the fungi present in agroecosystems with the target insect pest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.