Abstract

Although caffeine is the most widely used central nervous system stimulant, the neuronal populations and pathways mediating its stimulant effects are not well understood. Using c-Fos protein as a marker for neuronal activation, the present study investigated the pattern of c-Fos induction at 2 hours after low locomotor-stimulant doses (1, 5, 10, and 30 mg/kg, i.p.) of caffeine and compared them with those after a higher dose (75 mg/kg, i.p.) or saline injection in adult male rats. Fos-immunoreactive neurons were counted in selected nuclei across the entire brain. Caffeine induced an increase in locomotor activity in a dose-dependent manner up to doses of 30 mg/kg and a decline at 75 mg/kg. Quantitative analysis of Fos-immunoreactive neurons indicated that no structures showed significant Fos expression at doses below 75 mg/kg or a biphasic pattern of Fos expression, as in locomotion. In contrast, caffeine at 75 mg/kg induced a significant increase compared with the saline condition in the number of Fos-immunoreactive neurons in the majority of structures examined. The structures included the striatum, nucleus accumbens, globus pallidus, and substantia nigra pars reticulata and autonomic and limbic structures including the basolateral and central nuclei of the amygdala, paraventricular and supraoptic hypothalamic nuclei, periventricular hypothalamus, paraventricular thalamic nuclei, parabrachial nuclei, locus coeruleus, and nucleus of the solitary tract. The locomotor-enhancing effects of low doses of caffeine did not appear to be associated with significant Fos expression in the rat brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.