Abstract

Nitric oxide (NO) is an important messenger in brain signaling and influences the balance of monoaminergic and glutamatergic neurotransmission. Alterations of NO signaling are thought to play a crucial role in the pathophysiology of mood disorders. The locus coeruleus (LC) comprises the largest group of norepinephrine containing neurons in the mammalian brain. These norepinephrinergic LC neurons are able to generate NO. Immunohistochemical staining of neuronal nitric oxide synthase (nNOS)-immunoreactive (ir) neurons was performed in the LC of the brains of 10 patients with bipolar I disorder (BD), 8 patients with major depressive disorder (MDD) and 16 control cases (C). Analysis of variance (ANOVA) revealed significant differences between the groups, and post hoc tests indicated a lower nNOS-ir neuron number in bipolar patients than in controls (left −34%, right −17%). The total number of Nissl-stained LC neurons showed no changes between major depressive disorder patients, bipolar patients and controls. In the mood disorder patients, illness duration correlated negatively with nNOS-ir neuronal number (r=−0.74, p=0.002). A reduced relative amount of NO in the LC of bipolar patients is likely a result of a compensation for increased glutamatergic activity. The current data on nNOS suggest a dysregulation of the nitrergic system in bipolar disorder. Future studies may clarify the potential role of glial cells in the context of the described nNOS deficit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.