Abstract

Intracellular recording and labeling were combined with neurophysin immunohistochemistry to study neurons in the paraventricular nucleus region of the rat hypothalamus. Neuronal membrane properties were examined in hypothalamic slices, and cells were labeled by injecting biocytin or Lucifer yellow. Slices were then embedded, sectioned, and immunohistochemically processed for neurophysin. Immunoreactivity patterns, and in some cases counterstaining, enabled determinations of the cytoarchitectonic positions of recorded cells to be made. Recorded cells were divided into three types according to their electrophysiological characteristics. The first type lacked low-threshold Ca2+ spikes and displayed linear current-voltage relations, a short time constant, and evidence for an A current. These were relatively large cells that were typically immunoreactive for neurophysin and were situated near other neurophysin-positive neurons. The second type had relatively small low-threshold potentials that did not generate bursts of Na+ spikes. These cells had heterogeneous current-voltage relations and intermediate time constants. They did not label for neurophysin, and most were located in the parvicellular subregion of the paraventricular nucleus. The third type had large low-threshold Ca2- spikes that generated bursts of Na+ spikes, and these cells had nonlinear current-voltage relations and long time constants. These neurons were dorsal or dorsolateral to the paraventricular nucleus and were not immunoreactive for neurophysin. These results indicate that paraventricular magnocellular neurons lack low-threshold potentials, whereas paraventricular parvicellular neurons display low-threshold potentials that generate one or two action potentials. Neurons that fire spike bursts from low-threshold potentials are adjacent to the paraventricular nucleus, confirming earlier reports.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.