Abstract

The aim of this review will be to familiarize the reader with the general area of antibody (Ab) glycosylation and to summarize the known functional roles of glycosylation and how glycan structure can contribute to various disease states with emphasis on allergic disease. Both immunoglobulin (Ig) isotype and conserved Fc glycosylation sites often dictate the downstream activity of an Ab where complexity and degree of glycosylation contribute to its ability to bind Fc receptors (FcRs) and activate complement. Most information on the effects of glycosylation center on IgG in cancer therapy and autoimmunity. In cancer therapy, glycosylation modifications that enhance affinity for activating FcRs are utilized to facilitate immune-mediated tumor cell killing. In autoimmunity, disease severity has been linked to alterations in the presence, location, and composition of Fc glycans. Significantly less is understood about the role of glycosylation in the setting of allergy and asthma. However, recent data demonstrate that glycosylation of IgE at the asparagine-394 site of Cε3 is necessary for IgE interaction with the high affinity IgE receptor but, surprisingly, glycosylation has no effect on IgE interaction with its low-affinity lectin receptor, CD23. Variations in the specific glycoform may modulate the interaction of an Ig with its receptors. Significantly more is known about the functional effects of glycosylation of IgG than for other Ig isotypes. Thus, the role of glycosylation is much better understood in the areas of autoimmunity and cancer therapy, where IgG is the dominant isotype, than in the field of allergy, where IgE predominates. Further work is needed to fully understand the role of glycan variation in IgE and other Ig isotypes with regard to the inhibition or mediation of allergic disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.