Abstract

We investigated the immunoperoxidase demonstration of vasopressin (VSP) bound to paraffin-embedded sections of rat kidney and the effects of various fixatives. Slices of rat kidney from normal and 4-day water-deprived rats were incubated with 10(-7) M VSP, fixed, and embedded in paraffin. Hydrated sections of these tissues were again incubated with 10(-7) M VSP or 10(-7) M VSP and 10(-5) M oxytocin (OXY). VSP bound to the sections was demonstrated using rabbit anti-Arg8 VSP antiserum and peroxidase-labeled second antibody. In sections of kidney from both normal and water-deprived rats, immunoperoxidase labeling was most intense in the renal papilla and was restricted to the cells of the ducts of Bellini and loops of Henle. In the medulla, the collecting ducts and medullary thick ascending limbs of Henle were moderately stained. In the normal kidney sections there was no staining of the proximal tubules, distal convoluted tubules (DCT), and only slight staining of the cortical collecting ducts (CCD). However, in the water-deprived rats there was a considerable increase in the staining of the DCT and CCD. Simultaneous incubation in OXY and VSP resulted in reduced immunoperoxidase labeling of the tubules. Omission of VSP incubation led to a similar decrease in stain intensity, indicating a specificity for the sites of VSP binding. This technique allows the identification of cells responsible for the binding of VSP in the kidney.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.