Abstract
In the demanding field of proteomics, there is an urgent need for affinity-catcher molecules to implement effective and high throughput methods for analysing the human proteome or parts of it. Antibodies have an essential role in this endeavour, and selection, isolation and characterisation of specific antibodies represent a key issue to meet success. Alternatively, it is expected that new, well-characterised affinity reagents generated in rapid and cost-effective manners will also be used to facilitate the deciphering of the function, location and interactions of the high number of encoded protein products. Combinatorial approaches combined with high throughput screening (HTS) technologies have become essential for the generation and identification of robust affinity reagents from biological combinatorial libraries and the lead discovery of active/mimic molecules in large chemical libraries. Phage and yeast display provide the means for engineering a multitude of antibody-like molecules against any desired antigen. The construction of peptide libraries is commonly used for the identification and characterisation of ligand-receptor specific interactions, and the search for novel ligands for protein purification. Further improvement of chemical and biological resistance of affinity ligands encouraged the "intelligent" design and synthesis of chemical libraries of low-molecular-weight bio-inspired mimic compounds. No matter what the ligand source, selection and characterisation of leads is a most relevant task. Immunological assays, in microtiter plates, biosensors or microarrays, are a biological tool of inestimable value for the iterative screening of combinatorial ligand libraries for tailored specificities, and improved affinities. Particularly, enzyme-linked immunosorbent assays are frequently the method of choice in a large number of screening strategies, for both biological and chemical libraries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Combinatorial Chemistry & High Throughput Screening
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.