Abstract

The immunity of a combined DNA vaccine of HSV-2 glycoproteins B2 (gB2) and D2 (gD2) genes in comparison to individual vaccines was studied with regard to protecting against the HSV infection. Two recombinant DNA vaccines of the pHS2-gB2 or pHS2-gD2 were constructed and formulated. The neutralizing antibody titers appeared higher in the B2 : D2 gene cocktail-vaccinated mice than that of the individual B2 or D2 gene-vaccinated group alone, and the positive KOS control induced higher titer of the neutralizing antibody than combined or individual gene vaccines. The mock-immunized mice failed to induce enough. The ranks for the CTL activity and the protection rates against the lethal intravaginal challenge were shown as KOS > B2:D2 cocktail > D2 > B2 gene vaccines. The vaginal external diseases in the B2 : D2 or D-vaccinated mice were significantly reduced against the challenging dosages. The virus titers in the vaginal secretions of the vaccinated mice significantly reduced with time, and the B2 : D2 gene vaccine decreased more than each individual vaccine alone. It can be concluded that the cocktailed vaccines are more effective in the humoral and cellular immune responses in the mice, and in the protection of the mice against the intravaginal challenging dosages when compared with individual gene vaccines. All the DNA vaccines failed to block the latent infection in sensory nerves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.