Abstract

Photodynamic therapy (PDT) is a clinically approved procedure for treatment of cancer and infections. PDT involves systemic or topical administration of a photosensitizer (PS), followed by irradiation of the diseased area with light of a wavelength corresponding to an absorbance band of the PS. In the presence of oxygen, a photochemical reaction is initiated, leading to the generation of reactive oxygen species and cell death. Besides causing direct cytotoxic effects on illuminated tumor cells, PDT is known to cause damage to the tumor vasculature and induce the release of pro-inflammatory molecules. Pre-clinical and clinical studies have demonstrated that PDT is capable of affecting both the innate and adaptive arms of the immune system. Immune stimulatory properties of PDT may increase its beneficial effects giving the therapy wider potential to become more extensively used in clinical practice. Be sides stimulating tumor-specific cytotoxic T-cells capable to destroy distant untreated tumor cells, PDT leads to development of anti-tumor memory immunity that can potentially prevent the recurrence of cancer. The immunological effects of PDT make the therapy more effective also when used for treatment of bacterial infections, due to an augmented infiltration of neutrophils into the infected regions that seems to potentiate the outcome of the treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.