Abstract

The immune response is a dynamic system that maintains the integrity of the body, and more specifically fight against infections. However, an unbalanced host immune response is highlighted in many diseases. Exacerbated responses lead to autoimmune and allergic diseases, whereas, low or inefficient responses favor opportunistic infections and viral reactivations. Conflicting situations may also occur, such as in sepsis where inflammation and compensatory immunosuppression make it difficult to deploy the appropriate drug treatment. Until the current day, assessing the immune profile of patients remains a challenge. This is especially due to the inter-individual variability—a key feature of the immune system—which hinders precise diagnosis, prognosis, and therapeutic stratification. Our incapacity to practically interpret the host response may contribute to a high morbidity and mortality, such as the annual 6 million worldwide deaths in sepsis alone. Therefore, there is a high and increasing demand to assess patient immune function in routine clinical practice, currently met by Immune Functional Assays. Immune Functional Assays (IFA) hold a plethora of potentials that include the precise diagnosis of infections, as well as prediction of secondary and latent infections. Current available products are devoted to indirect pathogen detection such as Mycobacteria tuberculosis interferon gamma release assays (IGRA). In addition, identifying the status and the underlying factors of immune dysfunction (e.g., in septic patients) may guide immune targeted therapies. Tools to monitor and stratify the immune status are currently being studied but they still have many limitations such as technical standardization, biomarkers relevance, systematic interpretation and need to be simplified, in order to set the boundaries of “healthy,” “ill,” and “critically ill” responses. Thus, the design of new tools that give a comprehensive insight into the immune functionality, at the bedside, and in a timely manner represents a leap toward immunoprofiling of patients.

Highlights

  • The immune system plays a key role in protecting our body from internal and external threats, contributing to the maintenance of homeostasis

  • Many of the released proteins can be used as markers to identify the early onset of sepsis and to stratify patients at risk of organ failure caused by the overwhelming inflammatory host-response

  • Transcriptome signatures hold great promise to address the complexity of the immune system within a single test, to determine the patient’s immune status. Assessing such transcriptional response after ex-vivo stimulation may overcome the observed heterogeneity of sepsis cohorts, and provide a better assessment of the immune status on top of several confounders such as inter-individual variability or temporal effects

Read more

Summary

Introduction

The immune system plays a key role in protecting our body from internal and external threats, contributing to the maintenance of homeostasis. Monitoring of this dual risks of rejection and infection through immune functional assays could help assess the immune function of the transplant recipient and individualize the immunosuppressive therapy.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.