Abstract

Negative regulation of B cell activation by cognate immune complexes plays an important homeostatic role in suppressing B cell hyperactivity and preventing consequent autoimmunity. Immune complexes co-ligate the BCR and FcγRIIB resulting in both growth arrest and apoptosis. We now show that such apoptotic signalling involves induction and activation of p53 and its target genes, the pro-apoptotic Bcl-2 family members, Bad and Bid, as well as nuclear export of p53. Collectively, these events result in destabilisation of the mitochondrial and lysosomal compartments with consequent activation and interplay of executioner caspases and endosomal-derived proteases. In addition, the upregulation of Fas and FasL with consequent activation of caspase 8-dependent death receptor signalling is required to facilitate efficient apoptosis of B cells. Consistent with this role for Fas death receptor signalling, apoptosis resulting from co-ligation of the BCR and FcγRIIB is defective in B cells from Fas-deficient MRL/MpJ-Faslpr mice. As these mice develop spontaneous, immune complex-driven lupus-like glomerulonephritis, targeting this FcγRIIB-mediated apoptotic pathway may therefore have novel therapeutic implications for systemic autoimmune disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.