Abstract

Heparin lyase III has garnered widespread attention due to its high specificity and minimal loss of anticoagulant activity during the preparation of low molecular weight heparin (LMWH), a crucial anticoagulant drug in clinical practice. However, low expression levels and complex preparation processes limit its practical application. To address these challenges, high-performance Bacteroides thetaiotaomicron heparin lyase III (Bhep III) variants were engineered and immobilized for LMWH preparation. First, we enhanced enzyme expression by adding a solubility-enhancing tag and optimizing the N-terminal coding sequence, which resulted in a Bhep III activity level of 2.9 × 103 U/L with 8-fold increase. After evolution guided the design of rational mutations, the variant Bhep III K85A/Q95F/S471T generated higher activity (5.4 × 104 U/L in 5-L fermenter), which is, to our knowledge, the highest reported to date in the literature, being 1.7-fold that of the wild type and demonstrating 2-fold increase of the thermal stability. By screening and optimizing the C-terminal self-assembling tag, we successfully immobilized Bhep III, further increasing its thermal stability by 12-fold, and allowing for the multi-batch preparation of LMWH with simple centrifugation. The immobilized heparin lyase III demonstrated sufficient reusability in enzymatic reactions, facilitating efficient industrial-scale production of LMWH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.