Abstract

The objective of this study is to improve the blood compatibility of polysulfone (PSF) based hemodialysis membranes through generating antioxidative surfaces with superoxide dismutase (SOD)/catalase (CAT) enzyme couple immobilization. Enzymes were attached both covalently and ionically on the plasma treated and polyethyleneimine (PEI) deposited membranes, respectively. The loss of enzymes from PEI modified surface at the end of 4h was found to be relatively higher during storage in phosphate buffered saline (PBS) at pH 7.4 when compared to the enzymes on the plasma treated surface. The kinetic studies indicated that SOD catalyzed the reaction in the diffusion-limited regime at all substrate concentrations and its inactivation by hydrogen peroxide was prevented in the presence of CAT. SOD/CAT coated PSF membranes were capable of reducing the levels of reactive oxygen species in blood and can significantly prolong activated partial thromboplastin time. In addition, both the adsorption of human plasma proteins and platelet activation on all modified membranes decreased significantly compared to the unmodified PSF membranes. Proposed modification methods did not affect high permeability, high mechanical strength or the non-toxic properties of the PSF membranes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.