Abstract

The in situ stabilization of potentially toxic metals (PTMs), using various easily available amendments, is a cost-effective remediation method for contaminated soils. In the present study, we investigated the effectiveness of apatite and a commercial mixture of dolomite, diatomite, smectite basaltic tuff, bentonite, alginite and zeolite (Slovakite) on Pb, Zn, Cu and Cd stabilization by means of decreasing their bioavailability in contaminated soil from an old lead and zinc smelter site in Arnoldstein, Austria. We also investigated the impact of 5% (w/w) apatite and Slovakite applications on soil functionality and quality, as assessed by glucose-induced soil respiration, dehydrogenase, acid and alkaline phosphatase and β-glucosidase activity. Both amendments resulted in increased soil pH and decreased PTM potential bioavailability assessed by diethylenetriamine pentaacetic acid extraction and by sequential extractions in the water-soluble and exchangeable fractions. The efficiency of stabilization was reflected in the soil respiration rate and in enzymatic activity. The β-glucosidase activity assay was the most responsive of them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.