Abstract

The effects of the continuous amendments with lime (L), lime mixed with organic manure (LO), or phosphate fertilizer (LP) on the soil bacterial community, soil available cadmium (Cd) content, and Cd accumulation in rice planted in a Cd contaminated paddy soil were determined through a four-season field experiment. The results showed that with continuous application of amendments during the four seasons, the soil pH increased significantly compared with the control, while the soil available Cd content significantly decreased by 12.9–18.2%, 13.1–17.3% and 0.09–23.2% under the L, LO, or LP treatments, and the Cd content of rice was significantly reduced by 28.5–56.2%, 37.6–53.4%, and 31.2–44.6%, respectively. The rice Cd content in each season at amendment treatments was lower than the National Food Safety Standard of China (maximum level of Cd in grains is 0.2 mg/kg). The diversity and richness of soil bacteria significantly increased after the continuous amendments in soil for four-season cropping. Soil pH and available Cd content were important factors for soil bacterial community. Lime mixed with phosphate fertilizer or organic manure had been characterized by a significant increase of Proteobacteria, Nitrospirae, and Chloroflexi and a decrease of Acidobacteria based on an Illumina Miseq sequencing analysis. The results indicate that the continuous application of lime mixed with organic manure or phosphate fertilizer is a very important measure to ensure the quality safety of rice and improve soil quality in a Cd-contaminated paddy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.