Abstract

Class-incremental learning (CIL) aims to recognize classes that emerged in different phases. The joint-training (JT), which trains the model jointly with all classes, is often considered as the upper bound of CIL. In this paper, we thoroughly analyze the difference between CIL and JT in feature space and weight space. Motivated by the comparative analysis, we propose two types of calibration: feature calibration and weight calibration to imitate the oracle (ItO), i.e., JT. Specifically, on the one hand, feature calibration introduces deviation compensation to maintain the class decision boundary of old classes in feature space. On the other hand, weight calibration leverages forgetting-aware weight perturbation to increase transferability and reduce forgetting in parameter space. With those two calibration strategies, the model is forced to imitate the properties of joint-training at each incremental learning stage, thus yielding better CIL performance. Our ItO is a plug-and-play method and can be implemented into existing methods easily. Extensive experiments on several benchmark datasets demonstrate that ItO can significantly and consistently improve the performance of existing state-of-the-art methods. Our code is publicly available at https://github.com/Impression2805/ItO4CIL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.