Abstract

This paper introduces a novel neuro-dynamical model that accounts for possible mechanisms of action imitation and learning. It is considered that imitation learning requires at least two classes of generalization. One is generalization over sensory–motor trajectory variances, and the other class is on cognitive level which concerns on more qualitative understanding of compositional actions by own and others which do not necessarily depend on exact trajectories. This paper describes a possible model dealing with these classes of generalization by focusing on the problem of action compositionality. The model was evaluated in the experiments using a small humanoid robot. The robot was trained with a set of different actions concerning object manipulations which can be decomposed into sequences of action primitives. Then the robot was asked to imitate a novel compositional action demonstrated by a human subject which are composed from prior-learned action primitives. The results showed that the novel action can be successfully imitated by decomposing and composing it with the primitives by means of organizing unified intentional representation hosted by mirror neurons even though the trajectory-level appearance is different between the ones of observed and those of self-generated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.