Abstract

Bispyridinylidenes (BPYs) have emerged as an important class of neutral organic electron donors, with redox potentials that vary widely with choice of substituent. Methods to predict the effect of substitution on the redox potential are therefore highly desirable. Here we show that the redox potential of BPYs featuring iminophosphorano substituents (R3 P=N-), which represent the most reducing class of BPYs, can be predicted based on the well-known Tolman electronic parameter (TEP) for the respective phosphine fragment (R3 P). Moreover, building on earlier work relating redox potentials to Hammett-type substituent constants, it is now possible to quantitatively predict σp + values for iminophosphorano substituents from TEP values. These results provide a path for precisely tailoring redox potentials of iminophosphorano-substituted BPYs, but also give quantitative descriptors for how these highly versatile iminophosphorano substituents can impact the properties of any molecular scaffold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.