Abstract

Influence Maximization aims to find the top-$(K)$ influential individuals to maximize the influence spread within a social network, which remains an important yet challenging problem. Proven to be NP-hard, the influence maximization problem attracts tremendous studies. Though there exist basic greedy algorithms which may provide good approximation to optimal result, they mainly suffer from low computational efficiency and excessively long execution time, limiting the application to large-scale social networks. In this paper, we present IMGPU, a novel framework to accelerate the influence maximization by leveraging the parallel processing capability of graphics processing unit (GPU). We first improve the existing greedy algorithms and design a bottom-up traversal algorithm with GPU implementation, which contains inherent parallelism. To best fit the proposed influence maximization algorithm with the GPU architecture, we further develop an adaptive K-level combination method to maximize the parallelism and reorganize the influence graph to minimize the potential divergence. We carry out comprehensive experiments with both real-world and sythetic social network traces and demonstrate that with IMGPU framework, we are able to outperform the state-of-the-art influence maximization algorithm up to a factor of 60, and show potential to scale up to extraordinarily large-scale networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.